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The effects of the absence of inversion symmetry on superconducting states are investigated theoretically. In
particular, we focus on the noncentrosymmetric compounds that have the cubic symmetry O like Li2Pt3B. An
appropriate and isotropic spin-orbital interaction is added in the Hamiltonian, and it acts like a magnetic
monopole in the momentum space. The consequent pairing wave function has an additional triplet component
in the pseudospin space, and a Zeeman magnetic field B can induce a collinear supercurrent J with a coefficient
��T�. The effects of anisotropy embedded in the cubic symmetry and the nodal superconducting gap function
on ��T� are also considered. From the macroscopic perspectives, the pair of mutually induced J and magne-
tization M can affect the distribution of magnetic field in such noncentrosymmetric superconductors, which is
studied through solving the Maxwell equation in the Meissner geometry as well as the case of a single vortex
line. In both cases, magnetic fields perpendicular to the external ones emerge as a signature of the broken
symmetry.
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I. INTRODUCTION

The family of fermion superfluid, which includes the
classes of conventional superconductor, helium-3 superfluid,
and cuprate superconductor, has been one of the most fron-
tier subjects in condensed matter physics. According to the
parity symmetry of their pairing wave function,1 the above
classes can be labeled as s-wave, p-wave, and d-wave super-
fluids, respectively, and each has distinct thermodynamic and
transport properties. In a system without inversion symmetry,
this classification is, however, invalid, and the system is ex-
pected to simultaneously possess the properties belonging to
distinct classes. The symmetry of the pairing wave functions
as well as the gap functions is the immediate question. The-
oretical studies based on the addition of a spin-orbital inter-
action in the Hamiltonian predict the Cooper pair to be a
mixed state of singlets and triplets in pseudospin space,2

which can lead to a nonvanishing spin susceptibility at zero
temperature.2–4 Besides, the nodal gap structure has been in-
vestigated experimentally5–8 on two typical superconducting
compounds, CePt3Si and Li2Pt3B,9,10 which have the point
group symmetries of C4v and O, respectively.

On the other hand, the spin-orbital interaction also pro-
vides a correlation between the electric and magnetic degrees
of freedom within the Fermi sea, connecting with the mag-
netic properties of the superconducting state in a subtle way.
For example, a net polarization of spins can be induced by a
shift of momenta distribution or vice versa in the supercon-
ducting state.3,11,12 In other words, the supercurrent and mag-
netization can be mutually induced. Therefore, the macro-
scopic distributions of current and magnetic field in the
superconducting state can also be used to probe the effect of
lacking inversion symmetry.13–16 One should note that the
form of spin-orbital interaction must vary with the back-
ground crystals of different point group symmetries. Conse-
quently, the magnetic properties pertaining to superconduct-
ing CePt3Si and Li2Pt3B are expected to be quite different.
However, almost all the previous theoretical studies are
based on the symmetry of C4v, which allows the Rashba
form of spin-orbital interaction.

In this paper, we focus on the magnetic properties pertain-
ing to the compounds with crystal symmetry of O, such as
Li2Pt3B. The starting point is to write down an appropriate
spin-orbital interaction, which turns out to act like a mag-
netic monopole in momentum space in this case. For sim-
plicity, we first consider the case of isotropic Fermi surface
and pairing gap. The supercurrent J is found to have a com-
ponent parallel to the applied Zeeman magnetic field B, and
the proportional constant � is obtained by the linear response
theory. For macroscopic studies, we employ the Maxwell
equation to investigate the distribution of magnetic field in
the Meissner geometry and the case of a single vortex line.
Lastly, we also consider the effects of anisotropy embedded
in the cubic symmetry, which causes a power-law depen-
dence of ��T� for very low temperature due to the appear-
ance of line nodes of superconducting gap functions.

II. MICROSCOPIC DERIVATION OF SUPERCURRENT
INDUCED BY A ZEEMAN FIELD

The goal of this section is to obtain an expression for the
supercurrent induced by a Zeeman magnetic field in the bulk
superconductor without inversion symmetry. We first con-
sider the normal state. The lack of inversion symmetry is
manifested itself by the spin-orbital interaction in the Hamil-
tonian H=�p�Hp���ap�

† ap�, in which the operator is given by

Hp =
p2

2m
− EF − h�p · �� , �1�

and ap� are the second-quantized operators for the electron
of momentum p and spin polarization �= �↑↓ � is along the z
axis in the laboratory frame. For convenience, we write �p
= p2 /2m−Ef. Note that the spin-orbital interaction is charac-
terized by the parity-breaking inner product consisting of a

parity odd h�p=−h�−p and the spin �� , which is invariant under
spatial inversion. It is convenient to work in the helicity basis

�labeled by ⇑⇓� in which the operator h�p ·�� is diagonal, that
is,
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ĥp · �� �p ⇑ ⇓ � = � �p ⇑ ⇓ � . �2�

The eigenvalues of Hp are thus given by �p
�=�p�hp for

positive ⇑ and negative ⇓ helicities. Hence, the degenerate
spectrum is split into two branches � in the presence of the
spin-orbital interaction. The transformation between the he-
licity basis ⇑⇓ and the laboratory frame basis ↑↓ is given by

the unitary operator Up=exp�− i
2 k̂ ·�� 	p

�, which rotates the z

axis by an angle of 	p around the axis of k=z
 ĥp. More
explicitly, the matrix from of Up can be written down in

terms of the coordinate of ĥp, namely,

Up =� cos
	p

2
− e−i�p sin

	p

2

ei�p sin
	p

2
cos

	p

2
	 . �3�

Next, we include the pairing between two electrons of
opposite momenta on the same branch. In the helicity basis,
a general mean-field description for the pairing potential H�

can be written as

H� = �
p


�+
*�p�a−p⇑ap⇑ + �−

*�p�a−p⇓ap⇓ + H.c.� , �4�

where the two gap functions �+ and �−, representing the
pairing order parameter on the two branches, are not identi-
cal in general. However, the above pairing Hamiltonian can,
by performing the transformation U, be restored to the case
of a singlet whenever ���p�=e�i�p���. Now, the Nambu rep-
resentation for the full Hamiltonian H in the helicity basis
can be written as

H = �
p

�ap⇑
† a−p⇑�� �p − hp �+

�+
* − �p + hp

� ap⇑

a−p⇑
† 

+ �ap⇓
† a−p⇓�� �p + hp �−

�−
* − �p − hp

� ap⇓

a−p⇓
†  .

�5�

In what follows, we employ the method of Matsubara
Green’s functions.17 It is useful to introduce the Nambu

spinor representations p and ̃p for ⇑⇓ and ↑↓ bases, re-
spectively,

̃p =�
ap⇑

ap⇓

a−p⇑
†

a−p⇓
†

	, p =�
ap↑

ap↓

a−p↑
†

a−p↓
†

	 . �6�

The Matsubara Green’s functions Ǧ in the ↑↓ basis are de-
fined in a complex time-ordered manner as

G���p,�� = − �T�p����p�
† �0�� �7�

and in the matrix form as

Ǧ =�ĝ f̂

f̄
ˆ

f̄
ˆ , �8�

where ĝ and f̂ are the matrix forms of the ordinary Green’s
functions and Gor’kov Green’s functions. We note that the

lower components have the properties ĝ̄�p ,��=−ĝtr�−p ,−��

and f̄
ˆ�p ,��= f̂†�p ,−��. The Fourier transformation of G is

given by

G���p,�n� =
1

�
�

0

�

d�ei�n�G���p,�� , �9�

where 1 /� is the temperature and the frequency �n= �2n
+1�� /� is restricted due to the Fermi statistics. It is easier to

first obtain the Green’s function G̃
ˇ

by simply inverting the

matrix �i�n−H� in the helicity basis. The desired Ǧ can be
obtained by performing the rotation in the pseudospin space
using the following:

ĝ�p� = Upĝ̃Up
† , �10�

f̂�p� = Up f̃
ˆ
U−p

tr , �11�

where the transformation matrix U−p for the opposite mo-
mentum is given by Up�−i�y�ei�z�p. Using the property that

�y��
tr�y =−�� , the expression for the Green’s function Ǧ can

be obtained as follows:

ĝ =
1

2

�g+ + g−� + �g+ − g−�ĥp · �� � ,

f̂ =
1

2

�f+ + f−� + �f+ − f−�ĥp · �� ��i�y� , �12�

where the scalar functions g� and f� are given below,

g� = −
i�n + �p

�

�n
2 + �p

�2 + ����2
,

f� =
��e�i�p

�n
2 + �p

�2 + ����2
, �13�

where we note that the previous condition for the pairing to
recover the singlet is consistent with the condition for which
the triplet component of Gor’kov Green’s function vanishes
in Eq. �12�.

In what follows, we use the linear response theory to cal-
culate the supercurrent J induced by an external Zeeman

magnetic field b� . We express the Fourier-transformed current
operator in terms of the Nambu spinor representation as

J�q = �
p

p−�
† �v�p���p+�, �14�

where the momentum p�=p�
q
2 , and the velocity operator

vp associated with momentum p is obtained by taking the
derivative of the Hamiltonian with respect to p, which gives
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an identical result with the previous studies,15

v�̌p =�
p

m
− �ph�p · �� 0

0
p

m
+ �ph�p · �� tr	 . �15�

The paramagnetic perturbation V resulting from the Zeeman

magnetic field b��r� is V=−��drs��r� ·b��r�; here, the positive
� is the magnetic moment and s��r� denotes the local spin
density. V can be represented in Fourier space as V

=−�s�q ·b�−q in which the Fourier-transformed spin density is
given by

s�q = �
p

p−q/2
† �� p+q/2, �16�

where �� is the spin operator for the Nambu spinor represen-
tation given by

��̌ = � �� 0

0 − �� tr  . �17�

After some arrangement, the current J� can be written down
explicitly as

J��q,i�n� = − �
0

�

d�ei�n��T�J�q
†���s�q�0�� · �− �b�−q�

= −
�

�
�
p

�
�m

1

2
Tr�
v�̌pǦ�p−,i�m����̌ · b�−q�


Ǧ�p+,i�n + i�m�� , �18�

in which the symbol Tr� denotes taking trace over both the
electron and hole sectors, and a factor of 1

2 is added to avoid
double counting.

III. MANIFESTATION OF THE ABSENCE OF INVERSION
SYMMETRY

In this section, we are going to demonstrate the manifes-
tation of the absence of inversion symmetry in this cubic
superconductors from both microscopic and macroscopic
perspectives. Starting from the general expression for super-
current in Eq. �18�, we investigate the static and homoge-
neous case; that is, the limits q→0 and �n→0 are taken.
The resultant static current J is collinear with the applied
field, which can be written as

J = − ��T�B , �19�

where the macroscopic magnetic field or the magnetic induc-

tion is B=b�0. The appearance of this coefficient � is an im-
portant signature of the lack of inversion symmetry. In Sec.

III A, � is studied explicitly for a given isotropic h�p.
Section III B is devoted to the studies of macroscopic

aspects, which deals with the interaction between the mag-
netic field and the nonvanishing pairing order parameter �. A
crucial addition of Eq. �19� to the ordinary supercurrent and

the corresponding magnetization are the key ingredients for
understanding the new distribution of magnetic field. By the
way, the expressions for J and M can be obtained by taking
the derivatives of free energy as14

J = 2
�F

�q�
,

M = −
�F

�B
, �20�

where the gauge-invariant phase gradient q� =���+ 2e
c A and

the free energy F contains an extra term of − 1
2�q� ·B repre-

senting the absence of inversion symmetry.14 More explicitly,
the above expressions can be written as

4�

c
eJ =

1

�2�A +
c�

2e
� � −

�

�2B , �21�

4�M =
�

�2�A +
c�

2e
� � . �22�

� denotes the London penetration length. The length param-
eter �= 4e�

c ��2 is introduced for later convenience. Note that
we have taken the electronic charge to be �−e�.

A. Microscopic aspects

Now, we consider the simplest case for which the spin-
orbital interaction is isotropic, and the gaps are identical for
both branches and isotropic as well, that is,

h�p = �p ,

�+ = �− = � . �23�

The strength of the spin-orbital interaction is characterized
by the quantity �, which has the dimension of velocity and is
weak in the sense that � /vF�1. Here, vF denotes the Fermi
velocity. Starting from Eq. �18�, with some arrangements, the
static current can be obtained by taking the limit q→0 of the
following expression:

Jq = −
�

�
�

−�

+�

d�����


�
�n

�
�,�=�

Q��

�i�n + �p+

� ��i�n + �p−

� � + �2

��n
2 + �p+

� 2 + �2���n
2 + �p−

� 2 + �2�
,

�24�

where the matrix elements of Q represent the factors for
intrabranch contributions, �=�=�, and the interbranch
ones, �=−�. Explicitly, Q in the matrix form can be written
as
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Q =�
1

2
n� −

1

4
�l� + t�� −

1

4
�l� − t��

−
1

4
�l� − t�� −

1

2
n� −

1

4
�l� + t�� 	 , �25�

where the three vectors are obtained after the operation of
trace and solid-angle integration, namely,

n� =� d�

4�
Tr� p

m
��� · B��p̂ · �� �� =

2

3

p

m
B ,

l� =� d�

4�
Tr
��� ��� · B�� = 2�B ,

t� =� d�

4�
Tr
��� �p̂ · �� ���� · B��p̂ · �� �� = −

2

3
�B . �26�

Note that the trace here is only taken over a two-by-two
helicity space in contrast to the previous operation in Eq.
�18�. First, we note that the static current in Eq. �24� is zero

when the spin-orbital interaction is absent. For n� , l�, and t� in
Eq. �26�, therefore, only the contributions up to first order
� /vF are relevant. Since the summation over �n will give a
singular integrant concentrated at the Fermi level, it is eli-
gible to substitute the quantities p and ���� with their values
at the Fermi level and then move them out of the integral.
However, the contributions from n� in the diagonal parts of Q
must be taken care of because explicitly they are of zeroth
order of � /vF. Hence, the implicit contributions from the
modification of the Fermi momentum and density of states
due to the spin-orbital interaction have to be taken into ac-
count. Namely, the Fermi momentum for each branch, pF

�

= pF�1�� /vF�, and also the density of states at the Fermi
level, ��=mpF

��1�� /vF�, should be used here. We also use
the trick that enables performing the integration of energy
first,18 and after some algebra the coefficient � is obtained as

��T�
����0�

= −
4

3��1 −
�

�
�

n

�2

��n
2 + �2�3/2�

− �1 −
�

�
�

n

1

��n
2 + �2�1/2

�2

�n
2 + �2 + ��pF�2�� .

�27�

The term in the first bracket is actually the Yoshida function
Y�� ,T�, which is a universal function characterizing the
single-particle excitation across the gap � at temperature T.
For an isotropic gap and at low temperature T /��1, the
function Y is proportional to exp�−� /T�. The second bracket
is identical to the first one when the spin-orbital interaction is
absent. We denote this term by a function y�� ,� ,T� to rep-
resent the excitations between two superconducting states
separated by an energy of �pF. Thus, we can rewrite Eq. �27�
as �= 4

3����0��y−Y�. At zero temperature, the function y
can be evaluated by replacing the summation over the Mat-
subara frequency by an integral, and for isotropic � and �,
this function is given by

y��,�,T = 0� = 1 −
1

2	

1
�1 + 	2

ln�1 + 2	2 + 2	�1 + 	2� ,

�28�

where the number 	=�pF /�. For small 	, the function y

� 2
3	2. For large 	, it is approximately 1−

ln�2	�

	2 . Both limits
coincide with the previous predictions.2,12

In addition, the intrabranch and interbranch contributions
can be respectively recognized as the Pauli and Van Vleck
ones in the previous studies.12 Therefore, the induced current
J is absent as the Pauli and Van Vleck contributions cancel
each other in the normal state in which Y =y=1. On the other
hand, the existence of such current relies on the fact that the
Pauli paramagnetic contribution in the superconducting state
is significantly suppressed, while the Van Vleck one is only
reduced by a small portion as long as ���pF. Conse-
quently, one can easily infer that the net supercurrent always
flows opposite to the Pauli paramagnetic current.

B. Macroscopic aspects

Here, the effect of lacking inversion symmetry on a mac-
roscopic length scale is studied through solving the static
Maxwell equation,

� 
 B = 4� � 
 M +
4�

c
�− e�J . �29�

Together with the current and magnetization given by Eqs.
�21� and �22�, we are able to obtain an equation in terms of
the magnetic filed B only, namely,

� 
 � 
 B = −
1

�2B + 2
�

�2 � 
 B , �30�

in which the last curl term is generated from �
M as well
as the collinear supercurrent induced by B. Hence, one can
expect to observe a transverse component of the applied Zee-
man field in such noncentrosymmetric superconductors.

Equation �30� can be applied for studying the penetration
of the magnetic field in Meissner geometry. Explicitly, we
can consider a cubic superconductor occupying the space for
z�0. It is more convenient to first consider a general field
Bx�z�x̂+By�z�ŷ containing both x and y components. Conse-
quently, the equation with which the general field satisfies is

d2

dz2B+�z� =
1

�2B+�z� − 2i
�

�2

d

dz
B+�z� , �31�

where B+ stands for the linear combination Bx+ iBy. Defining
B+�z=0+�=Bin,+, the field just inside the superconductor, the
general solution is then given by

B+�z � 0� = Bin,+e−z/���1−�2/�2+i��/���, �32�

which is identical to the previous results.13 So, one can ex-
pect a slight increase of penetration depth by a factor of

1 /�1− �2

�2 for such cubic superconductors in Meissner geom-
etry. Besides, we note that the additional oscillation is a con-
sequence of a parallel component of J to B.
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The unknown Bin,+ in Eq. �32� can be determined from the
boundary condition Bext=Bin−4�M�z=0+�, which requires
the knowledge of magnetization M or, equivalently, the
gauge-invariant q� . In fact, q� can be obtained from the inte-
gration of the relation �−i�B+�z�=dA+�z� /dz with a given
boundary condition at infinity. We can assume the homoge-
neity for phase � throughout the superconductor, which is
indicative of vanishing A at z=� to ensure zero current
there. Consequently, the boundary condition at the surface
can be shown to, up to first order of � /�, have the following
form:

i�Bext,+ = Ain,+. �33�

A similar relation for B− can be obtained from the above by
taking complex conjugates on both sides.

If the external field is Bext=Bx̂, then Ax�0+�=0 as a result
of Eq. �33�. Consequently, Mx�0+�=0, which demonstrates
that the parallel field is continuous across the surface. In fact,
the magnetic fields Bx and By inside the superconductor can
be obtained by taking the real and imaginary parts of Eq.
�32�, respectively. Up to first order of � /�, the two compo-
nents can be written as

Bx = B�cos
�z

�2 +
�

�
sin

�z

�2�e−z/�, �34�

By = B� �

�
cos

�z

�2 − sin
�z

�2�e−z/�. �35�

Along the direction of the applied field, the field Bx pen-
etrates into the superconductor with an additionally slow os-
cillation of period about � / �

� . On the other hand, My�0+� is
finite due to the existence of finite flow velocity proportional
to Ay at the interface. Hence, a discontinuity for field By is
generated at the interface,

Bin,y − Bext,y

Bext,x
=

�

�
, �36�

which is different from the previous prediction for inversion-
broken superconductor of the C4v symmetry where the dis-
continuity happens to the parallel field across the interface.14

The functional form of By in Eq. �35� indicates that it has the
largest magnitude �

�B at the surface, changes sign at z��,
and then decays to zero while slowly oscillating. Further-
more, the flux associated with the perpendicular By is zero.
This is consistent with the conclusion drawn from Eq. �33�
that Ax=0 at the interface since both Ax�z=�� and Az are
zero.

Equation �30� can also be applied for studying a single
vortex line as a macroscopic signature of lacking inversion
symmetry. We consider the conventional case in which the
vortex line is along the z axis, and the cylindrical coordinates
are adopted here. The components of the magnetic field are
assumed to be B��r� and Bz�r� along the directions of �̂ and
ẑ, respectively. The z and � components of Eq. �30� are
given by

�1

r

d

dr
�r

d

dr
 −

1

�2�Bz�r� = − �̃
1

�

1

r

d

dr
�rB�� , �37�

� d

dr
�1

r

d

dr
r −

1

�2�B��r� = �̃
1

�

d

dr
Bz, �38�

where we denote the dimensionless number �̃=2� /� for con-
venience. We can therefore assume the following perturba-
tion solutions:

Bz = Bz
�0� + �̃2Bz

�2� + ¯ , �39�

B� = �̃B�
�1� + �̃3B�

�3� + ¯ . �40�

The zeroth order solution Bz
�0� of Eq. �37� is just the conven-

tional single vortex line solution, given by �

2��2 K0�r /��,
where � is a quantum of flux ��c

e and K0 is the modified
Bessel function of zeroth order. As can be seen in Eq. �38�,
now the transverse field B� emerges as a result of the non-
zero source proportional to K1 from the identity K0�=−K1. Up
to the first order of �̃, the transverse field can be written
down in terms of the Green’s function g1 associated with Eq.
�38�.19 Defining the dimensionless variable x as r /�, it can
be expressed as

B�
�1��x�� �

2��2 = �
0

�

x�dx�g1�x,x��K1�x��

= K1�x��
0

x

x�dx�I1�x��K1�x��

+ I1�x��
x

�

x�dx�
K1�x���2, �41�

in which K1 and I1 are the modified Bessel functions of first
order. The asymptotic behaviors of the transverse field dis-
tribution are

B�
�1��x� � �

x

2
ln

1

x
, x → 0

��x

8
e−x, x → �� . �42�

Hence, the transverse field increases from zero at the origin,
reaches its maximum at a distance of order � from the center,
and is followed by an exponential decay. The above extra
magnetic fields noncollinear with the externally applied one
can, in principle, be detected by observing the extra preces-
sion of polarized muons when their polarization is parallel to
the external applied field. �

� for Li2Pt3B is of order 10−3 using
the spin-orbital splitting estimated by Lee and Pickett.20

IV. ANISOTROPIC FERMI SURFACE AND LINE NODES
OF GAP

In previous sections, we demonstrate an induced super-
current parallel to the external Zeeman field as a signature of
lacking inversion symmetry in cubic superconductors. Actu-
ally, the spin-orbital interaction appropriate for the point
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group O respects all but the elements connected to inversion
in Oh. The odd-parity basis functions21 �px

nx̂+ py
nŷ+ pz

nẑ ;n
=1,3 ,5�, in which the cubic symmetry is embedded, belong-
ing to the A1u representation within Oh can still be used to

construct the vectors h�p. Similarly, the general gap function
respecting the cubic symmetry,

�̂�p� = 
�0�p� + d�p · �� ��i�y� , �43�

can have the component �0�p� constructed from the even-
parity basis functions belonging to the A1g representation

while the vector function d�p, having identical symmetry

properties of h�p, can be constructed from the A1u representa-
tion. Here, both components can be nonzero since parity is
no longer respected. An important feature of the gap function
given in Eq. �43� is the possible appearance of zeros when

the order parameters �0�p� and d�p can simultaneously be real
after appropriate gauge transformations, which is true if the
time-reversal symmetry is respected in the system. Conse-
quently, it is possible to realize the zeros of the gap function

when �d�p� exceeds ��0�p�� for some points on the Fermi sur-
face. Gapless excitation can therefore exist in such supercon-
ductors by showing, for example, a power law temperature
dependence of penetration depth.22

In fact, the nodal structure of gap function in the com-
pound Li2Pt3B was shown to be line nodes through the ob-
servation of linear temperature dependence in penetration
depth for very low temperature.7,22 Here, we shall investigate
the effects of anisotropy and line nodes on the coefficient
��T� near zero temperature. Since we are only interested in
the regime of very weak Zeeman field, the anisotropy, which
could result in some nonlinear field dependence for stronger
field regime, has little qualitative effect here. Hence, only the
line nodes of gap function are relevant to the low tempera-
ture behavior of ��T�. The intrabranch, or the Pauli, contri-
butions of ��T� in Eq. �27� for the isotropic case can be
generalized here by directly replacing the gaps �� with

��0�� �d� �. As for the interbranch contribution, the gaps on
both branches are, in fact, much smaller than the separation
�pF in Li2Pt3B, which suggests little relevance of actual gap
function to this contribution. Moreover, even the appearance
of zeros associated with the spin-orbital interaction, ���� are
also irrelevant to the T dependence of this contribution at
very low temperature as long as the zeros associated with �
are not identical to those associated with the pairing gap.

We thus define a dimensionless quantity ��T��
��0�−��T�

��0� to

present the temperature dependence due to the line nodes at
temperature close to zero. Furthermore, from previous argu-
ments, only the intrabranch contributions associated with the

pairing gap of ��0�− �d� � is significant here. In addition, we are
only interested in the effects due to the line nodes and take
these parameters ���� and vF��� to be isotropic, which
makes the evaluation easier and more accessible. Next, the
summation over �n in the function Y in Eq. �27� can be
transformed into an integral of energy, which makes ��T�
into the following form:

��T� =� d�

4�
�cos 	�2�−

2��̂��
0

�

d�� 1

E3

2

eE/T + 1

+
1

2E2T

1

cosh2�E/2T� , �44�

where the Zeeman field is assumed to be along the z axis,

and �−��̂� denotes the gap functions of the direction �̂ on

the Fermi surface, and E=��2+�−
2��̂�. We note that the

above integral vanishes when T is exactly zero since E is
always positive for all �. Hence, the contribution for T
slightly larger than zero comes from integration around the
solid angles � associated with the zeros of gap. By the cubic
symmetry, we can infer that there are six sets of line nodes
on the Fermi surface, which as a whole remain invariant
under any cubic rotation. Hence, the contributions from the
six sets can be divided into ��T�=2���T�+4���T�, where ��

denotes that from the line nodes that are symmetrically dis-
tributed around the z axis, while �� denotes remaining sets
that are around the x or y axis.

For a given set of line nodes, the gap function can be
expanded around these zeros in the following manner:

�−��̂� = ���	c��	 − 	c� , �45�

which means that the solid angle �̂= �	 ,�� associated with
the zeros can be parametrized as 
	c��� ,�� along the azi-
muthal direction. ���	c� denotes the slope of gap function

along the direction of 	̂. Finally, the linear temperature de-
pendence can be extracted from ��T�, and the following ex-
pression can be obtained if one extends the upper limit of 	
integral to infinity:

� ���T�
���T�


=� d�

2�
� cos2 	c

sin2 	c cos2 �
 T

���	c�


�
0

� �
0

�

x2dxdy� 2

r3

1

er + 1
+

1

2r2

1

cosh2�r/2� ,

�46�

in which x=	���	c� /T, y=� /T, and r=�x2+y2. In terms of
polar coordinate, the integral is to give � ln 2.

V. CONCLUSIONS

In this work, we demonstrate an induced supercurrent par-
allel to the external Zeeman magnetic field utilizing the
Green’s function method. Besides, the induced supercurrent

CHI-KEN LU AND SUNGKIT YIP PHYSICAL REVIEW B 77, 054515 �2008�

054515-6



and the consequent magnetization modify the distribution of
magnetic fields in the Meissner geometry as well as in the
vortex line. Transverse magnetic fields are generated as a
sign of breaking inversion symmetry in superconductors of
point group symmetry O such as Li2Pt3B.
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